A Synthetic Iron-Sulfur **Cluster with** Phenoxide **Terminal** Ligands

WALTER E. CLELAND and BRUCE A. AVERILL*

Department of Chemistry, Michigan State University, East Lansing, Mich. 48824, U.S.A.

Received February 24, 1981

In addition to the iron-molybdenum cofactor [1], a novel molybdenum-iron-sulfur cluster of as yet unknown structure [2], the molybdenumiron protein of nitrogenase contains additionalironsulfur centers released as 4Fe-4S clusters upon treatment with thiols in denaturing organic solvents [3]. The only technique thus far used to examine these centers *in situ* is ⁵⁷Fe Mössbauer spectroscopy, which has shown that they contain iron in two distinct sites in a I:3 ratio. Three iron atoms termed D (with a small quadrupole splitting) and one iron atom termed $Fe²⁺$ (with Mössbauer parameters typical of high-spin $Fe²⁺$ in a tetrahedral sulfur environment) comprise a diamagnetic $(S = 0)$ unit, called a 'P-cluster' [4]. This and the fact that oxidation by one electron per Pcluster yields a paramagnetic state $(S \ge 5/2)$ has led to the conclusion that the P-clusters are a variant of normal 4Fe-4S clusters in the fully reduced $([4Fe-4S]°)$ oxidation state. The most likely means of differentiating the iron atoms D from $Fe²⁺$ is coordination of the former by non-sulfur protein ligands, with oxygen (phenoxide or carboxylate) being most likely. Holm [5] has generated in solution and measured some physical properties of a carboxylate-substituted iron-sulfur tetramer, but to date no iron-sulfur clusters with oxygen ligands have been prepared in pure form. We report herein the preparation and some of the properties of the first such synthetic complex, $(Et_4N)_2 [Fe_4S_4(OPh)_4]$ $(I).$

Reaction of 40 equivalents of anhydrous, sublimed phenol with $(Et_4N)_2[Fe_4S_4(SEt)_4]$ in acetonitrile establishes an equilibrium in which a small fraction of bound ethanethiolate is displaced by phenol [6]. Repeated removal of solvent *in vacua* produces $(Et_4N)_2[Fe_4S_4(OPh)_4]$ (*I*), isolated as wellformed red-black plates upon recrystallization from dry acetonitrile/isopropanol. Anal.: Calcd. for C₄₀- $H_{60}Fe_4N_2O_4S_4$: C, 48.80; H, 6.14; Fe, 22.69; N, 2.84; 0, 6.50; S, 13.03. Found: C, 48.49; H, 6.26; Fe, 22.08; N, 2.87; 0,6.93; S, 13.14.

The optical spectrum of I in acetonitrile solution has maxima at 410 nm and 239 nm (ϵ =15,700 and 44,000 M^{-1} cm⁻¹), respectively, with shoulders at 650, 320, and 272 nm. These bands are thus blueshifted by 38 and 21 mn, respectively, compared to similar features observed [7] for $(Et_4N)_2[Fe_4S_4$ - $(SPh)_4$] (II), as expected upon replacing a sulfur donor by more electronegative oxygen. The magnetic moment per iron, μ_{Fe} , is 1.19 μ_{B} for *I* in the solid state at 22° C, essentially unchanged from that reported [8] for *II* (1.09 μ _B). In zero applied field, the $57Fe$ Mössbauer spectrum of *I* shows only a simple quadrupole doublet with $\delta = 0.50$ and $\Delta E_{\Omega} = 1.21$ mm/sec at 4.2 K (vs. metallic Fe at room temperature), compared to 0.35 and 1.10 mm/sec for II [9]. More interesting are 'H NMR spectra and electrochemical measurements, which give unexpected results. Isotropically shifted ¹H NMR spectra are observed for I in CD₃CN solution; the observed shifts, $(o, m, p\text{-}H \text{ at } +2.28, -2.25, \text{ and } +2.83 \text{ ppm} \text{ vs. free}$ PhOH at 22° C) show a pattern typical of dominant contact interaction. At any temperature, however, the magnitude of the shifts for I is approximately twice that observed $[10]$ for II , suggesting significantly greater delocalization of spin into the phenyl rings of the former, a result of the greater covalent character of the Fe-O bond. All isotropic shifts increase in magnitude with increasing temperature, as expected for an antiferromagnetically coupled system [10]. Electrochemical measurements (DC polarography at DME; cyclic voltammetry at platinum flag) show that I is reduced sequentially in reversible one-electron steps at -1.08 and -1.80 vs. SCE, compared to -0.98 and -1.66 V for *II*. Phenoxide ligation thus makes the $[4Fe-4S]²⁺$ core *more* difficult to reduce (by \sim 100 mV) than for thiophenoxide; for comparison, substitution by chloride $[11]$ (in the $[Fe_4S_4Cl_4]^2$ ion) causes a *positive* shift in $E_{1/2}$ of about 200 mV, while carboxylate substitution (in $[Fe_4S_4(OAc)_4]^2$) causes a positive shift of \sim 100 mV [5]. The seemingly anomalous electrochemical data may be explained by the high affinity of phenoxide ligands for *ferric* ion. Reduction of the $[4Fe-4S]^{2+}$ core will decrease the ferric character of the iron (if a delocalized description [12] is still correct in this case), and is therefore more difficult with phenoxide ligands.

Our results show that simple iron-sulfur clusters with phenoxide ligands are stable chemical species capable of existing in several net oxidation states. The most notable effect of substituting phenoxide for thiophenoxide is a negative shift of both first and second reduction potentials, indicating that Fe,& centers coordinated to a protein *via* tyrosinate residues will have reduction potentials either comparable to or slightly more negative than normal

^{*}Author to whom correspondence should be addressed.

 $Fe₄ S₄$ clusters with cysteme ligands [13] Togetherr with the observed change in $57Fe$ isomer shift to higher velocity, these results are consistent with, but do not uniquely specify, a structure such as III for the P-clusters of mtrogenase Further experiments almed at generating and characterizing more highly reduced clusters with phenoxide ligands are in progress

Acknowledgements

Ths research was supported by the Science and Education Administration of the U S Department of Agnculture under Grant No 78-59-2261-O-l-l 7.5-l from the Competitive Research Grants Office We thank Dr T A Kent and Dr E Munck of the Grey Freshwater Biological Institute of the University of Minnesota for the Mossbauer data.

References

- **1** V **K** Shah and W J Brdl, *Proc Nat1 Acad Scl US A* , 74, 3249 (1977)
- 2 J Rawlings, V K Shah, J R Chisnell, W J Brill, R

Zimmerman, E Munck and W H Orme-Johnson, J *BzoZ Chem,* 253, lOOl(l978)

- 3 G B Wong, D M Kurtz, Jr, R H Helm, L E Mortenson and R G Upchurch, *J Am Chem* **Sot ,** *101, 3078* (1979), D M Kurtz Jr, R S McMillan, B K Burgess, L E Mortenson and R H Hahn. Proc *Nat1 Acad Scl* **US** *A, 16,4986* (1949)
- *4* B H Huynh, M T Henzl, J A Christner, R Zunmerman, W H Orme-Johnson and L Munck, *Biochim Biophys Acta, 623, 124 (1980)*, R Zimmerman, E Munck, W J Brill, V K Shah, M T Henzl, J Rawlings and W H Orme-Johnson. *lbld,* 537. 185 (1978), C Munck, H Rhodes, W K Orme-Johnson, L C Davis, W J Brill and V K Shah, $ibid$, 400, 32(1975)
- 5 R W Johnson and R H Holm, *J Am Chem Soc*, *100, 5338* (1978)
- *6* L Que Jr, M A Bobnk, J A Ibers and R H Holm, *J Am* Chem Sot, 96, 4168 (1974)
- 7 B V DePamphllls, B A Avenll, T Herskovitz, L Que Jr and R H Helm, *J Am Chem Sot, 96, 4159* (1974)
- *8* E J Laskowsla, R B Frankel, W 0 Gillurn, G C Papaefthymiou, \overline{J} Renaud, \overline{J} A Ibers and R H Holm, *J Am Chem Sot, 100, 5322* (1978)
- 9 R B Frankel, B A Averlll and R H Holm, *J Phys (Pans), 35, Cb-107* (1974)
- 10 R H Helm, W D Phllhps, B A Avenll, J J Mayerle and T Herskovltz, *J Am Chem Sot, 96,* 2109 (1974)
- 11 G B Wong, M A Bobrik and R H Holm, Inorg Chem, *17, 578* (1978)
- 12 R H Holm, B A Averill, T Herskovitz, R B Frankel, H B Gray, O Suman and F J Grunthaner, *J Am Chem* sot , *96, 2644 (1974)*
- 13 C L Hill, J Renaud, R H Holm and L E Mortenson, *J Am Chem Sot, 99, 2549* (1977)